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Abstract

An efficient design that can analyze high dimensional simulation model
by using fewer runs as compared with other second-order designs is needed
in a complex system. In this paper, a new class of designs called space-
filling orthogonal-array based composite designs was proposed using the
centered l2-discrepancy and maximin distance. The proposed designs were
constructed and compared with other existing composite designs such as
orthogonal-array based composite designs, centered composite designs and
small composite designs based on relative D-efficiency and Ds-optimality
criterion for full model, linear, quadratic and bilinear terms respectively.
The results from the comparison show that the space-filling orthogonal-array
based composite designs are better in terms of efficiency and run sizes for
some cases especially as the number of factors increases.

Keywords: Central composite designs, Space-filling, Response surface de-
signs, Orthogonal array, Optimality criteria.

1 Introduction
In a complex nature of a system, analysts need an efficient design that can ex-
plore high dimensional simulation models. These simulation models are critical
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to the early phases of system design and involve complicated outputs with a wide
variety of linear and nonlinear response surface forms, Cioppa (2002). Response
surface designs such as orthogonal arrays (OAs) and composite designs (central
composite design and small composite design) are used to model the effect of the
individual factors in the second order model. In other to compliment the short-
coming of OAs and composite designs, Xu et al. (2014) constructed a design
called orthogonal array composite design (OACD) that comprises of a two-level
factorial portion, three-level OA as the axial portion and center points. A number
of researchers had discussed OACD and such include; Xu et al. (2014) constructed
OACDs which are effective for factor screening and response surface modeling,
Zhou and Xu (2016) assessed the properties of the OACDs and definitive screen-
ing composite designs (DSCDs) and most recently, Chen et al. (2017) studied the
robustness of OACD to missing observation using minimax loss criterion. Un-
fortunately, the OACD have significant limitations in that they cannot analyze
simulations that represent complicated systems.
In order to explore the complex relationships between input and output variables,
and to find an approximate model that is much simpler than the true but com-
plicated model, a good space-filling design (Zhou and Xu, 2014) can be used to
fix the bias between the approximate model and the true model by distributing
the design points evenly over the experimental boundaries. In the literature, sev-
eral space-filling criteria have been proposed and there are two broad categories:
uniformity-based and distance-based criteria. Some of such include; Zhou and Xu
(2014), Xiao and Xu (2017), Sukdaiphueng et al. (2017), Wu et al. (2017), Cioppa
(2002), Luc Pronzato (2012), Cioppa and Lucas (2007), Joseph et al. (2018) and
Joseph and Hung (2008). Space-filling are applied in response surface designs
such as OACD of Xu et al. (2014) in order to fit a variety of different high-order
models without making a priori assumptions about the response surface.
In this work, a new space-filling orthogonal-array based composite designs (SOACDs)
were proposed which are based on a two-level full or fractional factorial design
and a three-level orthogonal array (Xu et al., 2014 & Chen et al., 2017) with space-
filling properties such as uniformity (Fang and Lin, 2003 & Androulakis et al.,
2016) and maximin distance (Johnson et al., 1990) which enable the parameters
to be estimated without loss of efficiency than in other composite designs such
as central composite designs (CCDs) and small composite designs (SCDs) etc.
The proposed designs were compared with the other composite designs such as
orthogonal array based composite designs, centered composite design and small
composite designs under the D-efficiency and Ds-optimality for full model, linear
terms, quadratic terms, and bilinear terms, respectively.
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2 Methodology
In this section, we give a brief discussion of all the composite designs; space-
filling designs; Metamodels and space-filling criteria used in this paper.

2.1 Composite Designs
Central composite designs (CCD) are the most popular class of second-order re-
sponse surface designs, which was introduced by Box and Wilson (1951). These
designs are sequential in nature, which forms the basis of the sequential assembly
of the response surface designs. These designs involve n f runs of the two-level
k-factor full factorial or fractional factorial of resolution V combined with the nα
axial or star points as a second part, and finally nc center runs. The factorial por-
tion of the CCD contributes to the estimation of linear and two-factor interaction
terms, the axial part contributes to the estimation of the quadratic terms in the
model while the center runs provides some extra degrees-of-freedom to estimate
the pure error. In order to reduce the run size, Draper and Lin (1990) proposed
the small composite designs (SCDs) by using Plackett-Burman (1946) designs
(PBDs) as the factorial portion. In both CCD and SCD, the axial portion consist-
ing of 2k points arranged so that two points are chosen on the coordinate axis of
each variable at a distance of αfrom the design center. An orthogonal-array based
composite design (OACD) proposed by (Xu et al., 2014) is a composite design
that comprises of a two-level factorial portion, denoted by n f and the three-level
orthogonal-array axial portion denoted by nα. The two-level part was used to es-
timate the linear effects and two-factor interactions between variables while the
three-level orthogonal array was used to estimate the linear and quadratic effect.
The OACD differs from the CCD or SCD in the way they choose the additional
points. The CCD or SCD employs a one-factor-at-a-time approach for the addi-
tional points because each axial point has only one nonzero component. However,
the axial points of a CCD or SCD provide no information on bilinear (or interac-
tion) terms and resolution IV designs cannot be used as the two-level portion. For
this reason, the SCD must use a resolution III design as the factorial part even if
a resolution IV design with the same size exists. An OA of N runs, k columns,
s levels and strength t, denoted by OA(N, sk, t), is an N × k matrix in which for
each pair of columns, its combination of levels occurs equally often, Hedayat et
al. (1999). OACD can use resolution IV designs as the two-level portion which is
important for factor screening and in a sequential experiment and also, its attrac-
tive feature is that it allows us to perform multiple analyses with different parts of
the data for cross validation, Xu et al. (2014).
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2.2 Space-filling Designs
Space-filling designs aim at spreading the design points throughout the experi-
mental region as evenly as possible. Some of the popular space-filling designs
include Latin hypercube designs (McKay et al., 1979), uniform designs (Fang and
Wang, 1994), distance-based designs such as maximin and minimax (Johnson et
al., 1990) and so on. These designs are robust in modeling decisions and are there-
fore commonly used as designs for computer experiments. Uniformity in design
ensures that the points within the experimental region are distributed throughout
the interior of the cube and is not limited to the corners or surfaces of the cube,
Cioppa (2002). Discrepancies are used to measure the departure of uniformity of a
given design and all have their geometrical meanings and can be expressed as the
difference between the empirical distribution and the uniform distribution, Tang
et al. (2012). Centered l2-discrepancy (CD) Hickernell (1998) which is invariant
under reordering the runs, relabeling factors, reflections of the set of design points
about any plane passing through the center of the unit hypercube and parallel to
its faces, Fang and Mukerjee, (2000). It was observed that designs with low dis-
crepancy tend to have good space-filling properties and are model robust (Zhou
and Xu, 2014) in the sense that they can guard against incorrect estimates due
to model misrepresentation. Maximin (Mm) distance (Johnson et al., 1990), is
an important space-filling criterion widely used in computer experiment to mea-
sure how uniformly the design points scatter over an experimental region so that
the separation distance is maximized reasonably for prediction anywhere in the
domain.

2.3 Metamodels
A good Metamodel is one in which response makes close use of the variables
available and the errors are very small, Cioppa and Lucas (2007). The most com-
monly used metamodel is one in which y is a linear combination of the inputs, that
is;

y = β0 +
k

∑
i=1

βixi + εi (1)

In computer simulations with many input variables that gives responses, a linear
metamodel may not sufficiently characterize the response surface of a high-order
polynomial that include a curvilinear and interaction terms. In the presence of
high-order polynomials, multicollinearity among the input factors can affect the
precision of the estimates. To alleviate the problem, lower-order orthogonal poly-
nomial given by,
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y(x) = β0 +
k

∑
i=1

βixi +
k

∑
i=1

βiix2
i +

k−1

∑
i=1

k

∑
j>i

βi jxix j + εi (2)

have been introduced to model computer experiments where k is the number of
independent factors,β0,βi,βiiandβi j are the intercept, linear, quadratic and bilinear
(or interaction) terms respectively, and εiis the random with mean 0, variance 1
and independence between any pair of runs. The number of simulations, ns runs
must satisfyns ≥ k+ k+(k

2)+ 1to have sufficient degrees of freedom to estimate
the coefficients in the model. However, in practice, only a small percentage of the
input factors are generally significant.

2.4 Space-filling criteria
Hickernell (1998) defined squared centered l2-discrepancy (CD2) of a design D
over the unit cubeCn= [0,1] n as:
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(3)

where uik = (2xik + 1)/(2s),0<uik<1 and 0 ≤ xik ≤ s−1, s represents levels, n
is the number of input parameters that is the dimension of the design space, uik
and u jkare thekth coordinates of the ith and jth points respectively. However, the
wordlength pattern remains the same for combinatorial isomorphic designs, Tang
et al. (2012) since these designs are obtain from permuting the levels in the same
column whereas its centered l2discrepancy will not be the same when levels of
factors are permuted.
Maximin distance criterion, Johnson et al. (1990), measured how uniformly the
experimental points are scattered through the domain such that no two points are
close to each other. Letu = {u1, ...,un}and v = {v1, ...,vn}be two design points in
the design space[0,1]k for k factors. Fort>0, define the inter-site distance uand
vto be;

d(u,v) = {
k

∑
i=1

|ui − vi|t}1/t (4)

whent =1 and t =2, the measure in (4) becomes the rectangular and euclidean
distances, respectively. The maximin distance criterion seeks a design d of n
points in the design space[0,1]k that maximizes

min
u,v∈d

d(u,v) (5)

whereu ̸= vand d(u,v) is defined in (4) for any given t.
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3 Construction of Space-filling Orthogonal-Array based
Composite Design (SOACD)

In this section, the steps adopted in constructing the SOACD are presented. A
general guideline is to use a two-level fractional factorial, and three-level orthog-
onal array in (Xu et al., 2014) shown in Table 1, generalized minimum aberration
(GMA) in screening out poor designs and level permutations of the column of the
GMA designs to improve the space-filling property of the design.
Firstly, a two-level fractional factorial and three-level orthogonal array were se-
lected (strength two) and the GMA criterion was used to find the best sub-design
with n columns. For small designs, all level permutations can be conducted to
find the best design under CD and maximin criteria whereas for larger designs,
it may be infeasible to perform all possible level permutation when the number
of levels of the design and the number of runs increase. In such circumstance, a
local search heuristic stochastic algorithm proposed by Tang and Xu (2013) can
be used to find optimal or near optimal level permutation.
Algorithm1: Pseudocode for prototype local search heuristic
Initialize τ (number of iterations)
Initialize δ (impairment threshold) and uo (acceptance probability)
Input starting design Ds and let Dmin := Ds
fori =1 to τdo

Generate Dnew∈Ds (neighbour to current solution)
Compute ∇ = CD2(Dnew)−CD2(Ds) and generate a random number u from

u[0,1]
if(∇<0) or (∇< δ and u< u0):
then let Ds := Dnew
else ifCD2(Ds)< CD2(Dmin):
then let Dmin := Ds

end for
Algorithm 2:
2-level
Step 1. Choose a 2k full factorial (k ≥ 5) or a regular 2k −− p fractional factorial
orthogonal design.
Step 2. Use the GMA criterion to select the best design from some exiting designs.
Step 3. From the GMA design selected, conduct all possible level permutation
and select the design with the least discrepancy. h2is the two-level design selected
with n f runs.
3-level OA
Repeat Step1 to Step 3. h3is the three-level design selected (1, 0, -1) with nα runs.
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Step 4. Combine h2andh3together to form a space-filling orthogonal-array based

composite design (SOACD)h′ =
(

h2
h3

)
.

The starting design is the resulting GMA design from Step 2. This helps to re-
duce the complexity but restricts the structure of the starting design. Tang and
Xu (2013) defined the neighbour to current solution, N(Ds) by exchanging all el-
ements of two distinct levels within the same column of the current design Ds
so that the combinatorial structure of the design is unchanged. The impairment
threshold δ, which is set to be one-tenth of the squared discrepancy of the starting
design, is around 0.09 for the two-level and 0.02 for the three-level while the ac-
ceptance probability uo is between 0.1 and 0.3. CD2 was used as the space-filling
measure in Step 3 in Algorithm 2 while maximin criterion also gives similar result.
In each iteration, the algorithm will generate a new candidate solution Dnew in the
neighborhood of the current solution Ds. If this new candidate solution results
in an improved value of the CD2, that is; if ∇< 0 or (∇< δand u< u0)the new
candidate solution becomes the current solution.
Preposition: The properties of the resulting design depend on which two-level
column that is aligned with which three-level column. Although level permuta-
tions change geometrical structures, all designs evaluated in Step 3 have the same
generalized wordlength pattern (GWP) as its starting GMA designs since they are
combinatorial isomorphic.
Table 1: Two-level factorial and Three-level OA for different values of = 5, 6, . . .
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Table 2: Structure of the optimization algorithm for two-level

Table 3: Structure of the optimization algorithm three-level
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Table 4: Structure for 34-runs of SOACD with five factors and nc = 0

Table 1 represents two-level factorial and three-level OA for different values
of k, while Tables 2 and 3 represent the structure of the optimization algorithm
for two-level factorial and three-level orthogonal GMA designs, respectively. The
combination of the candidate solution Dnew in Tables 2 and 3 gives the SOACD
in Table 4 and it is optimal with respect to centered l2-discrepancy and maximin
criterion under the second-order model.

4 Comparison of Results
In this section, the proposed SOACDs were compared with other composite de-
signs (CCDs, SCDs and OACDs) in terms of relative D-efficiency and Ds-optimality.
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4.1 Comparison based on relative D−efficiency
The relative D-efficiency of SOACDs were compared with the corresponding
CCDs, SCDs and OACDs for 5≤ k≤11 and 1≤nc≤5. The results are presented in
Table 5. The relative D-efficiency (Dr−e f f ) is defined to be

Dr−e f f =

(
|XTX|A
|XTX|B

)1/p

(6)

where p = (k + 1)(k + 2)/2; A is the proposed SOACD; and B is any of the com-
posite designs.
Remark: D-efficiency greater than one implies that Design A is better than Design
B.
Table 5: Two-level factorial and Three-level OA for different values of = 5, 6, . . .

From Table 5, it was observed that D- efficiency of SOACDs is better than OACDs
as the factors increases for 5 ≤ k ≤ 11 and 1 ≤ nc ≤ 5. Furthermore, it can be
seen that SOACDs perform relatively better than the CCDs and SCDs for all cases
except for where relative D-efficiency is less than 1.

4.2 Comparison based on the relative D- and Ds-efficiency cri-
teria

In this section, the designs were compared in terms of the (overall) D-efficiency
defined in (7) for the full model (D), and Ds-efficiency defined in (8) for linear
terms (Dl), quadratic terms (Dq), and bilinear terms (Db), respectively at zero cen-
ter point (nc = 0). The design efficiencies in estimating a subset (Ds) of the model
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parameters are compared by dividing the model parameters into three groups: the
linear parameters (B j, j = 1, ...,k ), the quadratic parameters (B j j, j = 1, ...,k) and
the bilinear parameters (Bi j,1 ≤ i < j ≤ k). The D−e f f iciency for the full model
and Ds−e f f iciency for each subset (Dl , Dq and Db) of the parameters of the model
are computed, and the results are presented in Table 6 and Figures 1, 2, 3, and 4
respectively.

D−e f f iciency = N−1|XTX|1/p (7)

and
Ds−e f f iciency = N−1|XT

s Xs −XT
s X(s)(X

T
(s)X(s))

−1XT
(s)Xs|1/ps (8)

where s is any of linear (l), quadratic (q), and bilinear (b); ps is the number of
parameters in s; p is the number of parameters for the full model and for an N-
point design, X is the model matrix of the model defined in (2).
Table 6: Ds-efficiencies of different designs with nc = 0
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Figure 1 :Comparison of D-efficiecny for different designs

Figure 2 :Comparison of Dl-efficiency for different designs
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Figure 3 : Comparison of Dq-efficiency for different designs

Figure 4 : Comparison of Db-efficiency for different designs

In Figure 1, it can be seen that CCD has highest D-efficiency followed by SCD,
OACD and SOACD at k< 6. As the number of factors increases k >6, the effi-
ciency values of the full model for CCDs and SCDs decreases while OACDs and
SOACDs increases slightly. However, from Table 6 as the factors increases it can
be observed that the run size of OACDs and SOACDs is lesser than CCDs but
larger than of SCDs. Furthermore, the D-efficiency for SOACDs at k = 7, 8, and
9 are higher than that of CCDs, SCDs and OACDs.
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Figure 2 compares the Dl-efficiencies for estimating the linear parameters. It
can be seen that at k <6 the Dl-efficiency of CCD performs better but as k >6,
SOACDs have the best Dl- efficiencies.
Figure 3 shows the Dq-efficiencies for comparing the quadratic terms. It can be
observed that CCDs have the highest Dq-efficiencies followed by SOACDs except
at k = 5 where SCDs and OACDs are greater. This is follows the note given by
Chen et al. (2017), that more design points located at the corners will lead to
higher D-, Dl- and Db- efficiencies while more design points located at the mid-
sides and center will increase the quadratic efficiency. Table 6 reveals that as the
number of factors increases from 6, the Dq-efficiencies for SOACDs are higher
than that of OACDs. The performance of the Db-efficiencies for estimating the
bilinear terms is shown in Figure 4. It can be observed that as the number of
factors increases the performance of the CCDs and SCDs decreases while that
of the OACDs and SOACDs increases respectively. Moreover, in Table 6, the
SOACDs have the best Db-efficiencies in some cases for 5 ≤k≤ 9 as the factors
increases.

5 Conclusion
In this paper, space-filling orthogonal-array based composite designs (SOACDs)
were proposed using the maximin and the centered l2−discrepancies. SOACDs
were compared with OACDs, CCDs and SCDs under the overall relative D-efficiency
and Ds-optimality. In terms of the relative D-efficiency, the SOACDs perform
relatively better than CCDs, SCDs and OACDs in some cases for 5 ≤ k ≤ 11
and 1 ≤ nc ≤ 5 as the factors increases. Under the Ds-optimality criterion, the
SOACDs perform better in almost all the cases for estimating the full model, lin-
ear, quadratic and bilinear terms. On the run size basis, the SOACDs perform
well as the number of factors increases due to significant reduction in run size
compared to CCDs. Therefore, SOACD is recommended to be used in analyzing,
estimating effects, and interactions when exploring high-dimensional computer
simulations where there is considerable a prior uncertainty about the forms of
response surfaces.
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